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Abstract: In this paper, we built up an epidemic model with vaccination, elimina-
tion, quarantine hybrid management strategies and a specific non-linear incidence
rate feature (Susceptible, Infected, Quarantined and Recovered). There is a dis-
cussion of different points of equilibrium and their stability. In addition, some
numerical simulations are also illustrated in our analytical results. Finally, there
is a brief discussion about the position of all control strategies.
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1. Introduction
Epidemic models have become important tools in examining the dissemination

and control of infectious diseases. Modeling in the field of the study of disease
transmission has had its foundations in the mid 20th century. People have devel-
oped various epidemiological models (SIR, SIER, SIERS, SIQR, SEIV etc., where
S, I, E, R, Q, V denotes susceptible, infectious, exposed, recovered (removed),
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quarantined and vaccinated classes respectively) with different incidence rates to
control the spread of diseases over the last couple of years [1, 2, 4, 11, 15, 23, 27,
29, 30, 34]. The most commonly used effective methods to control the spread of
disease are quarantine, vaccination and elimination.

Quarantine is the most direct control strategy for the spread of infectious dis-
ease. It has been used to reduce the transmission of human diseases such as lep-
rosy, plague, cholera, typhus, yellow fever, smallpox, diphtheria, tuberculosis 25,
and measles etc, and also been used to tackle animal diseases such as rinderpest,
foot and mouth disease, psittacosis, asian fowl plague, rabies and corona virus
(COVIDE-19) etc. Hence, it is very important to study the infectious disease mod-
els with quarantine [6, 21, 25, 32]. Mathematical models have been used to study
their impact on the dynamics of infectious diseases under isolation and quarantine
(I and Q) in order to test the effectiveness of various scenarios (strategies) on the
avoidance or a melioration of the spread of highly contagious diseases [3, 7, 10,
12, 22]. In addition, extensions of the SIQR model have also been studied by [5,
28] that actively introduce a class A of asymptomatic individuals. Vaccination is
considered to be the most effective intervention strategy. It has been used to tackle
diseases such as measles, mumps, rubella, diphtheria, tetanus, influenza, polio, and
corona virus (COVIDE-19) disease etc. Recently, the epidemiological models with
vaccination strategy have been analyzed by many authors in [16, 18, 20, 24, 26,
36]. For example, Li et al. [18] discussed the global analysis of SIS epidemic model
with a simple vaccination and multiple endemic equilibria; Liu et al. [20] estab-
lished two SVIR models by considering the time for them to obtain immunity and
the possibility for them to be infected before this; Trawicki [26] proposes a new
SEIRS model with vital dynamics (birth and death rates), vaccination, and tem-
porary immunity provides a mathematical description of infectious diseases and
corresponding spread in biology; T. K. Kar et al. [16] focused on the study of a
nonlinear mathematical SIR epidemic model with a vaccination program, and the
results showed that an accurate estimation of the efficiency of vaccination is neces-
sary to prevent and control the spread of disease. We also refer the readers to [24,
36]. Elimination is also a powerful measure to eliminate the source of infection it
is that the infected individuals were killed when they are found. It has been used
to tackle diseases caused by animals or spreading in animals such as avian inuenza,
tuberculosis, tetanus, rota virus, corona virus (COVIDE-19) infection, etc. How-
ever, these models only consider a single prevention and control strategy, there is
scarce research on the hybrid case of these strategies.

Our goal of this paper is to consider a SIQR model with vaccination, elimina-
tion, and quarantine hybrid control strategies and a non linear Crowley–Martin
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incidence rate βSI
(1+α1S)(1+α2I)

[8] which can be used to interpret the case of varicella

(chicken-pox) dynamics. Here β, α1 and α2 are positive parameters that describe
the effects of contact rate, social awareness rate among susceptible and magni-
tude of interference among infective population, respectively, on the incidence rate.
α1α2 can be interpreted as magnitude of interference among susceptible and infec-
tive population due to vaccination and immunity. Recently, many researchers have
studied the virus dynamics for models with Crowley–Martin infection rate [27, 31,
35]. The rest of the manuscript is organized as follows. In Sect.2, SIQR model
is presented. In Sect.3, basic properties of solutions are discussed. In Sect.4, we
calculate the basic reproduction number then in Sect.5, we determine all possible
equilibria of model. In Sect.6, we discuss and analyze the local stability of the
equilibriums. In Sect.7, we discuss and analyze the global stability of the equi-
libriums. We present in Sect.8, some numerical examples of the dynamics of the
model. Finally, in Sect.9, we discussed the conclusion.

2. Model Formulation
In this section, we formulate a new SIQR epidemic model with vaccination,

elimination, and quarantine hybrid strategies and the nonlinear Crowley-Martin
incidence rate. We assume that the total population is divided into four dis-
tinct epidemiological sub classes of individuals which are susceptible, infectious,
quarantine, and recovered (removed) with sizes denoted by S(t), I(t), Q(t), and
R(t), respectively. The total population size at time t is denoted by N(t), with
N(t)=S(t)+I(t)+Q(t)+R(t). Thus, the resulting model is given by the following
model: 

dS

dt
= A− dS − βSI

(1 + α1S)(1 + α2I)
− pS

dI

dt
=

βSI

(1 + α1S)(1 + α2I)
− (γ + δ + d+ d1 + q)I

dQ

dt
= δI − (µ+ d+ d2)Q

dR

dt
= pS + γI + µQ− dR

(2.1)

whose state space is the first quadrant R+
4 = {(S, I, Q, R) : S ≥ 0, I ≥ 0, Q ≥

0, R ≥ 0} and subject to the initial conditions S(0) = S0 ≥ 0, I(0) = I0 ≥ 0,
Q(0) = Q0 ≥ 0, R(0) = R0 ≥ 0. It is assumed that all the parameters are posi-
tive. The definitions of the parameters are listed in Table 2.1.
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Table 2.1. Description of the model parameters.

State parameters Description
A Recruitment rate of the population
d The natural death rate of the population
d1 The disease-caused mortality of infective individuals
d2 The disease caused mortality of quarantined individuals
γ The rate at which individuals recover from compartment

I and move to compartment R
p The vaccination rate of the susceptible individuals
q The elimination rate of the infected individuals
µ The removed rate from the compartments Q

and R respectively
δ The quarantine rate of the infective class

3. Basic Properties of the Model
Summing up the four equations of model (2.1) and denoting

N(t) = S(t) + I(t) +Q(t) +R(t),

having
N ′(t) = A− dN − (d1 + q)I − d2Q ≤ A− dN.

If disease is not present, then N ′(t) = A − dN .This shows that population size
N → A

d
as t→∞. It follows that the solutions of model (2.1) exists in the region

defined by

Ω =

{
(S, I, Q, R) ∈ R+

4 : S, I, Q, R ≥ 0, S + I +Q+R ≤ A

d

}
(3.1)

This gives the following lemma which shows that the solutions of model (2.1) are
bounded, continuous for all positive time and lie in a compact set.

Lemma 3.1. The set Ω defined in (3.1) is a positively invariant region for model
(2.1). Moreover, every trajectory of model (2.1) is eventually staying in a compact
subset of Ω.

4. Basic Reproduction Number
One of the most useful threshold parameters that define mathematical problems

concerning infectious diseases is the basic reproductive number, also called the basic
reproductive rate or basic reproductive ratio. This measure is helpful because it



Global Dynamics of an SIQR Epidemic Model with ... 79

helps decide whether an infectious disease is going to spread across a population or
not. In this section, we will calculate the basic reproduction number R0 of system
(2.1) by using the next-generation matrix method described in [9]. For that, we
rewrite model (2.1) as
dx
dt

= F(x)− A(x), where x = (I,Q,R, S)′

F(x) =


βSI

(1+α1S)(1+α2I)

0
0
0

 and A(x) =


(γ + δ + d+ d1 + q)I
−δI + (µ+ d+ d2)Q
−pS − γI − µQ+ dR

−A+ (d+ p)S + βSI
(1+α1S)(1+α2I)

.

We calculate the Jacobian matrices for F(x) and A(x) at the disease-free equi-
librium x0 = (0, 0, pA

µ(d+p)
, A
(d+p)

).

F =


βA

Aα1+d+p
0 0 0

0 0 0 0
0 0 0 0
0 0 0 0

, V =


(γ + δ + d+ d1 + p) 0 0 0

−δ (µ+ d+ d2) 0 0
−γ − µ d − p

βA
Aα1+d+p

0 0 d+ p

.

FV−1 is the next generation matrix for model (2.1). It then follows that the spec-
tral radius of matrix FV−1 is ρ(FV−1) = Aβ

(Aα1+d+p)(γ+δ+d+d1+q)
. Thus, the basic

reproduction number of model (2.1) is

R0 =
Aβ

(Aα1 + d+ p)(γ + δ + d+ d1 + q)

. 5. Existence of Equilibria In this section, we obtain the existence of the
disease-free equilibrium E0 and the endemic equilibrium E∗ of model (2.1). Steady
states of model (2.1) satisfy the equations as follows

A− dS − βSI
(1+α1S)(1+α2I)

= 0
βSI

(1+α1S)(1+α2I)
− (γ + δ + d+ d1)I = 0

δI − (µ+ d+ d2)Q = 0
γI + µQ− dR = 0

(5.1)

The model (2.1) always has the disease-free equilibrium point E0(
A
d+p

, 0, 0, pA
µ(d+p)

).

Solving (5.1) we also get a unique positive, endemic equilibrium point E∗(S∗, I∗, Q∗

, R∗) of the model (2.1), where

S∗ = (γ+δ+d+d1+q)(1+α2I∗)
β−α1(γ+δ+d+d1+q)(1+α2I∗)

, Q∗ = δI∗

µ+d+d2
, R∗ = (pS∗+γI∗)(µ+d+d2)+µδI∗

d(µ+d+d2)
, and I∗ is

given as a root of the quadratic equation Ω1I
2

+ Ω2I + Ω3 = 0, where,

Ω1 = [α1α2β(γ + δ + d+ d1 + q)2],



80 J. of Ramanujan Society of Mathematics and Mathematical Sciences

Ω2 = β[α1(γ + δ + d+ d1 + q)− α2(Aα1 + d+ p)− β}](γ + δ + d+ d1 + q),

Ω3 = [Aβ2 − β(Aα1 + d+ p)(γ + δ + d+ d1 + q)].

Now,

I∗ =
−β(γ + δ + d+ d1 + q)[α1(γ + δ + d+ d1 + q)− α2(Aα1 + d+ p)− β] +

√
∆

2α1α2β(γ + δ + d+ d1 + q)2

where, ∆ = β2(γ + δ + d+ d1 + q)2[α1(γ + δ + d+ d1 + q)− α2(Aα1 + d+ p)− β]2

− 4α1α2(γ + δ + d+ d1 + q)

(Aα1 + d+ p)
[R0 − 1].

It is easy to obtain the following theorem.
Theorem 5.1. For system (2.1), there is always a disease-free equilibrium E0, and
there is also an unique endemic equilibrium E∗ when R0 > 1.
6. Local Stability Analysis

In this section, we study the local stability of the disease-free equilibrium E0

and the endemic equilibrium E∗ of model (2.1).
Theorem 6.1. If R0 < 1, the disease-free equilibrium E0 of model (2.1) is locally
asymptotically stable. If R0 > 1, the disease-free equilibrium E0 is unstable.
Proof. The Jacobian matrix of model (2.1) at the disease-free equilibrium E0 is

J(E0) =


−d− p −βA

d+p+α1A
0 0

0 βA
d+p+α1A

− (γ + δ + d+ d1 + q) 0 0

0 δ −(µ+ d+ d2) 0
p γ µ −d


The characteristic equation of J(E0) is

(d+ λ)(d+ p+ λ)(µ+ d+ d2 + λ){ βA

d+ p+ α1A
− (γ + δ + d+ d1 + q + λ)} = 0

This equation has the following roots: λ1 = −d,λ2 = −(d+ p),λ3 = −(µ+ d+ d2)
and λ4 = (γ + δ + d + d1 + q) − βA

d+p+α1A
, where λ1, λ2, λ3 < 0, while λ4 < 0 for

R0 < 1 and λ4 > 0 for R0 > 1.
Hence E0 is locally asymptotically stable for R0 < 1, while it is unstable for R0 > 1.

Theorem 6.2. If R0 > 1, the endemic equilibrium E∗ of model (2.1) is locally
asymptotically stable.
Proof. Consider

J(E∗) =


−V1 − d− p −V2 0 0

V1 V2 − (γ + δ + d+ d1 + q) 0 0
0 δ −(µ+ d+ d2) 0
p γ µ −d


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where,

V1 =
βI∗

(1 + α1S∗ + α2I∗ + α1α2S∗I∗)
− βS∗I∗

(1 + α1S∗ + α2I∗ + α1α2S∗I∗)
2

V2 =
βS∗

(1 + α1S∗ + α2I∗ + α1α2S∗I∗)
− βS∗I∗(α2 + α1α2S

∗)

(1 + α1S∗ + α2I∗ + α1α2S∗I∗)
2

The characteristic equation of J(E∗) is

(d+ λ)(µ+ d+ d2 + λ){λ2 + λ(V1 − V2 + 2d+ p+ γ + δ + d1 + q) + (V1 + p)
(γ + δ + d+ d1 + q) + pV2 + d(γ + δ + d+ d1 + q − V2)} = 0

Clearly, the two eigenvalues have strictly negative real part other two eigenvalues
are given by the quadratic equation

λ2 + λ(V1 − V2 + 2d+ p+ γ + δ + d1 + q) + (V1 + p)(γ + δ + d+ d1 + q) + pV2
+d(γ + δ + d+ d1 + q − V2) = 0

or

λ2 + λa1 + a2 = 0

where

a1 = (V1 + d+ p) + (γ + δ + d+ d1 + q − V2),

a2 = (V1 + p)(γ + δ + d+ d1 + q) + pV2 + d(γ + δ + d+ d1 + q − V2)

By Routh-Hurwitz criteria, we know that the model is stable if a1, a2 > 0 and
unstable if a1, a2 < 0. We obtain γ + δ + d + d1 + q > V2. Thus all eigenvalues
have negative real parts and hence model (2.1) is locally asymptotically stable at
endemic equilibrium E∗ if R0 > 1.

7. Global Stability Analysis
In this section, we study the global stability of the disease-free equilibrium E0

and the endemic equilibrium E∗ of model (2.1).

Theorem 7.1. If R0 < 1, the disease-free equilibrium E0 of model (2.1) is globally
asymptotically stable.
Proof. We prove the global stability of the model (2.1) at the equilibrium E0 when
R0 < 1. Taking the Lyapunov function

V (t) = I(t)
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Calculating the derivative of V (t) along the positive solution of model (2.1), it
follows that

V̇ (t) =
βSI

(1 + α1S)(1 + α2I)
− (γ + δ + d+ d1 + q)I

Since the incidence function

βSI

(1 + α1S)(1 + α2I)
≤

βIA
d+p

(1 + α1βIA
d+p

)(1 + α2I)
=

βIA

(α1A+ d+ p)(1 + α2I)

for 0 ≤ S ≤ A
d+p

.

V̇ (t) ≤
[

Aβ

(Aα1 + d+ p)
− (γ + δ + d+ d1 + q)

]
I

= (γ + δ + d+ d1 + q) [R0 − 1] I ≤ 0.

Furthermore, V̇ = 0 only if I = 0, so the largest invariant set contained in
{(S, I, Q, R) ∈ Ω : V̇ = 0} is the plane I = 0. By Lassalle’s invariance principle
[17], this implies that all solution in Ω approach the plane I = 0 as t → ∞. On
the other hand, solutions of (2.1) contained in such plane satisfy dS

dt
= A − dS,

dQ
dt

= −(µ + d + d2)Q, dR
dt

= µQ − dR, which implies that S → A
d

and Q → 0,
R→ 0 as t→∞, that is, all of these solutions approach E0 is globally asymptoti-
cally stable in Ω.

Next, we analysis the global stability of an endemic equilibrium E∗ by using
geometric approach method described by Li and Muldowney in [19]. For that, we
need to consider a parameter

w = max


−βI

(1+α1S)(1+α2I)
+ βSI[α1α2(I−S)+(α1−α2)]

[(1+α1S)(1+α2I)]
2 − p,

−β(S+I)
(1+α1S)(1+α2I)

+ βSI[(α1+α1α2I)]

[(1+α1S)(1+α2I)]
2 + γ + 2δ + d1 + q − p,

−βSI[(α2+α1α2S)]

[(1+α1S)(1+α2I)]
2 − µ− d2 + δ

 ,

and we will make use of the following theorem.

Theorem 7.2. (Li & Muldowney [19]). Suppose that the system x′ = f(x), with
f : D ⊂ Rn → Rn, satisfies the following:
(H1) D is a simply connected open set,
(H2) there is a compact absorbing set K ⊂ D,
(H3) x∗ is the only equilibrium in D.
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Then the equilibrium x∗ is globally stable in D if there exists a Lozinski
^

i measure
η such that

lim
t→∞

sup sup
x0∈K

1

t

t∫
0

η(B(x(s, x0)))ds < 0, (7.1)

B = PfP
−1 + PJ [2]P−1 (7.2)

and Q→ Q(x) is an

(
n
2

)
×
(

n
2

)
matrix valued function.

In our case, model (2.1) can be written as x′ = f(x) with f : D ⊂ Rn → Rn and
D being the interior of the feasible region Ω. The existence of a compact absorbing
set K ⊂ D is equivalent to proving that (2.1) is uniformly persistent [19, 14] and
the proof for this in the case when R0 > 1 is similar to that of proposition 4.2 of
[19]. Hence, (H1) and (H2) hold for system (2.1), and by assuming the uniqueness
of the endemic equilibrium in D, we can prove its global stability with the aid of
Theorem 7.2.

Theorem 7.3. If R0 > 1, d < w and the endemic equilibrium E∗ of system
(2.1) is unique, then E∗ is globally asymptotically stable in the feasible region Ω.
Proof. Let J be the Jacobian matrix of the system (2.1). Then the second additive
compound matrix of J is given by

J [2] =


−v1 + v2 + v3 − v4 − 2d 0 0
−p− γ − δ − d1 − q

δ −v1 + v2 − 2d− p −v3 + v4
0 v1 − v2 v3 − v4 − 2d− γ − δ

−d1 − q − µ− d2

 ,

where, v1 = βI
(1+α1S)(1+α2I)

, v2 = βSI[(α1+α1α2I)]

[(1+α1S)(1+α2I)]
2 , v3 = βS

(1+α1S)(1+α2I)
and v4 =

βSI[(α2+α1α2S)]

[(1+α1S)(1+α2I)]
2 .

Let P be the matrix-valued function defined by P = P (S, I,Q) = diag(Q
I
, Q
I
, Q
I

);

then P is C1 and non-singular in the interior of Ω, Pf = diag(Q
′I−I′Q
I2

, Q
′I−I′Q
I2

, Q
′I−I′Q
I2

) and P−1 = diag( I
Q
, I
Q
, I
Q

), PfP
−1 = diag(0, E

′

E
− I′

I
, E
′

E
− I′

I
) and B =

PfP
−1 + PJ [2]P−1. Then B can be written in the block form

B =

(
B11 B12

B21 B22

)
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with B11 = Q′

Q
− I′

I
− v1 + v2 + v3 − v4 − 2d − p − γ − δ − d1 − q, B12 = (0, 0),

B21 = (δ, 0)T and

B22 =

 −v1 + v2 − 2d− p+ Q′

Q
− I′

I
− v3 + v4

v1 − v2 v3 − v4 − 2d− γ − δ − d1
−q − µ− d2 + Q′

Q
− I′

I

 .

Consider the vector norm in R3 defined by ‖(u, v, w)‖ = max{|u| , |v| + |w|} ∈ R3

and let η1(B) be the Lozinski
^

i measure with respect to this norm. Then

η1(B) ≤ sup{g1, g2}, (7.3)

where g1 = (B11) + |B12|, g2 = η2(B22) + |B21|, |B12| and |B21| denote the matrix

norm with respect to l1 vector norm in norm R2 and η1 is the Lozinski
^

i measure
of B22 with respect to l1 vector norm in R2. We have |B12| = 0, |B21| = δ,

µ(B22) =
Q′

Q
− I

′

I
−d+max{−v1 +v2−d−p, v3−v4−d−γ−δ−d1 +−q−µ−d2}.

Then

g1 = Q′

Q
− I′

I
− βI

(1+α1S)(1+α2I)
+ βSI[(α1+α1α2I)]

[(1+α1S)(1+α2I)]
2 + βS

(1+α1S)(1+α2I)

− βSI[(α2+α1α2S)]

[(1+α1S)(1+α2I)]
2 − 2d− p− γ − δ − d1 − q

g2 = Q′

Q
− I′

I
− d+ max{ −βI

(1+α1S)(1+α2I)
+ βSI[(α1+α1α2I)]

[(1+α1S)(1+α2I)]
2 − d− p,

βS
(1+α1S)(1+α2I)

− βSI[(α2+α1α2S)]

[(1+α1S)(1+α2I)]
2 − d− γ − δ − d1 − q − µ− d2}+ δ

From the second equation in the system (2.1), we have

I ′

I
=

βS

(1 + α1S)(1 + α2I)
− (γ + δ + d+ d1 + q)

so

g1 =
Q′

Q
− d− p− βI

(1 + α1S)(1 + α2I)
+
βSI[(α1 − α2) + α1α2(I − S)]

[(1 + α1S)(1 + α2I)]2

and

g2 = Q′

Q
− d+ max{ −β(S+I)

(1+α1S)(1+α2I)
+ βSI[(α1+α1α2I)]

[(1+α1S)(1+α2I)]
2 + γ + 2δ + d1 + q − p,

− βSI[(α2+α1α2S)]

[(1+α1S)(1+α2I)]
2 − µ− d2 + δ}
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By (7.3), this implies that (7.1)

η1(B) ≤ Q′

Q
− d+ max{− βI

(1+α1S)(1+α2I)
+ βSI[(α1−α2)+α1α2(I−S)]

[(1+α1S)(1+α2I)]
2 − p,

−β(S+I)
(1+α1S)(1+α2I)

+ βSI[(α1+α1α2I)]

[(1+α1S)(1+α2I)]
2 + γ + 2δ + d1 + q − p,

− βSI[(α2+α1α2S)]

[(1+α1S)(1+α2I)]
2 − µ− d2 + δ}

=
Q′

Q
− (d− w)

By integrating both sides at the same time, we obtain

1

t

t∫
0

η1(B)ds ≤1

t
In
Q(t)

Q(0)
− (d− w)

so

lim
t→∞

sup sup
1

t

t∫
0

η1(B)ds ≤− (d− w)

and therefore, lim
t→∞

sup sup 1
t

t∫
0

η1(B)ds0. provided d > w. Hence, E∗ is globally

asymptotically stable in Ω.

8. Numerical Simulations
In this section, we will give some numerical examples to illustrate our main

results by using Milstein’s Higher Order Method [13]. For simulations, we take the
set of parameters (assumed) as shown in Table 8.1 and Table 8.2.

Table 8.1. Parameters used for simulation purpose when R0 = 0.078799 < 1.

Symbol A β d d1 d2 γ p q µ δ α1 α2

Value 0.3 0.7 0.2 0.1 0.2 0.2 0.05 0.12 0.1 0.2 0.01 0.05

Table 8.2. Parameters used for simulation purpose when R0 = 2.92683 > 1.

Symbol A β d d1 d2 γ p q µ δ α1 α2

Value 1.2 0.65 0.3 0.01 0.2 0.02 0.05 0.12 0.2 0.1 0.05 0.015

For this simulation, we take the set of parameters as shown in Table 8.1. In this
case, S(t) approaches to its steady state value while I(t), Q(t) and R(t) approaches
to zero as t→∞. Hence the disease disappears and dies out. (Fig. 8.1).
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Fig. 8.1.The figure represents that the disease dies out.

We take the set of parameters as shown in Table 8.2 for these simulations.
Here, Fig. 8.2 present S(t), I(t), Q(t) and R(t) all approaches to their steady state
values as t → ∞. Hence the disease becomes endemic. The main importance of
applying control strategies can be noted in Fig. 8.3, where we draw the variations
of infected individuals. It is noticed that when all control strategies are applied,
the infected class population remains the least. Fig. 8.4, represents the variation
of recovered class of population. Thus the Figs. 8.3-8.4, represent the behavioral
change of all classes of population as time evolves. Fig. 8.8, represents the phase
portrait in SQI-space with different initial conditions. This phase diagram shows
that lim

t→∞
(S(t), I(t), Q(t)) = (S∗, I∗, Q∗) for R0 > 1.

In addition, we set the same initial conditions and parameters as in Fig. 8.2
and obtain following illustrations (see Figs. 8.5-8.7). The reproduction number
R0 for quarantine-free (δ = 0) and vaccination-free (p = 0) model is (R0)δ=p=0 =
4.8148 > 1 the numerical simulation is shown in Fig. 8.5. The reproduction
number R0 for elimination-free (q = 0) and vaccination-free (p = 0) model is R0

(R0)q=p=0 = 4.08805 > 1, the numerical simulation is shown in Fig. 8.6. The
reproduction number R0 for elimination-free (q = 0) and quarantine-free (δ = 0)
(R0)q=δ=0 = 3.5895 > 1 , the numerical simulation is shown in Fig. 8.7.

Fig. 8.2.The figure represents that the disease endemic.
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Fig. 8.3.Variation of the infected population for different control strategies.

Fig. 8.4.Variation of the recovered population for different control strategies.

Fig. 8.5.Variational curves of S, I and R with time t when R0 = 4.8148 > 1
for the same initial values and parameters of Fig. 8.2 except δ = p = 0.
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Fig. 8.6.Variational curves of S, I and R with time t when R0 = 4.08805 > 1
for the same initial values and parameters of Fig. 8.2 except q = p = 0.

Fig. 8.7.Variational curves of S, I and R with time t when R0 = 3.5895 > 1
for the same initial values and parameters of Fig. 8.2 except q = δ = 0.

Fig. 8.8.The phase diagram at different initial values endemic equilibrium.
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9. Discussions and Conclusions
In this section, we discuss and analyze the characteristics of different prevention

and control strategies according to the basic reproductive number R0. From the
expression of the basic reproduction number R0 ,we see that the basic reproduc-
tion number R0 is dependent on the prevention and control coefficients p,q and δ.
Calculating the derivative of R0 about p, q and δ respectively, having

∆p =
∂R0

∂p
=

−Aβ
(Aα1 + d+ p)2(γ + δ + d+ d1 + q)

(9.1)

∆q =
∂R0

∂q
=

−Aβ
(Aα1 + d+ p)(γ + δ + d+ d1 + q)2

(9.2)

∆δ =
∂R0

∂δ
=

−Aβ
(Aα1 + d+ p)(γ + δ + d+ d1 + q)2

(9.3)

From the mathematical meaning of the derivative, we know that ∆p, ∆q and ∆δ
indicates rate of change the percentage of vaccination per unit, elimination per unit
and quarantine per unit for the basic reproduction number R0, respectively. Using
(9.1), (9.2) and (9.3), having ∆p < 0, ∆q < 0 and ∆δ < 0. Hence, vaccination,
elimination and quarantine strategy can reduce the basic reproduction number R0,
which is favorable to control the prevalence of diseases.

According to Formulas (9.2) and (9.3), from the perspective of R0, the effect
of the quarantine strategy on R0 is the same as that of the elimination strategy.
In particular, the effect of quarantine strategy on the epidemic state of diseases
is the same as that of elimination strategy Numerical simulations also illustrate
this fact (see Figs. 8.5-8.6). However, from the practical perspective, quarantine
strategy entails high treatment costs, where as elimination strategy requires smaller
costs. Therefore, elimination strategy can be used to reduce diseases in the animal
populations. But for some populations, the elimination strategy is not feasible, and
the quarantine strategy is no doubt an alternative way. According to the Formula
(9.2) and (9.3), ∆q = ∆δ, and having

∆p

∆δ
=

∆p

∆q
=

(γ + δ + d+ d1 + q)

(Aα1 + d+ p)

When p = q, ∆p > ∆q, it is showed that the vaccination strategy is better than
the quarantine strategy or elimination strategy (see Figs. 8.6-8.7).

However, from a practical point of view, because the susceptible S(t) is nor-
mally greater than the infectious I(t) and quarantine Q(t), the cost of raising the
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proportion of unit vaccination is much higher than the cost of raising the unit
quarantine or elimination. Therefore, the hybrid control strategies should be con-
sidered in the practical implementation for the prevention and control of infectious
diseases, which makes the cost and benefit are optimal.

In this research paper, we analyze and discuss a SIQR type epidemic model
with the specific non linear incidence rate and vaccination, elimination, quarantine
hybrid strategies is proposed and discussed. The mathematical analysis shows that
the basic reproduction number plays an important role to control the disease. It
has been obtained that disease-free equilibrium E0 is locally and globally asymp-
totically stable if R0 < 1 and unstable if R0 > 1 and the disease always dies out
eventually (see Fig. 8.1).Similarly, for the endemic equilibrium E∗, it has been
obtained for local as well as globally asymptotically stable under some conditions
and the disease persists at the endemic equilibrium level if it is initially present
(Fig. 8.2).Finally, we discussed and evaluated the characteristics of various control
strategies according to the basic reproduction number R0. We obtained that vacci-
nation strategy is better than quarantine strategy (see Figs. 8.5-8.7),elimination
strategy is the same as quarantine strategy (see Figs. 8.6-8.7) and vaccination,
elimination, and quarantine hybrid strategies are the best for optimizing cost and
benefit (see Figs. 8.2-8.7). In order to verify global stability, the phase diagram
is shown in Fig. 8.8, at various initial values.

In the model, we take the vaccination parameter as constant in the model, but
it would be beneficial if we take it as a time dependable function due to reality. We
leave this model for future more work on corona virus (COVID-19) and it’s new
variants infection disease.
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